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ESTIMTING MIrSSILE RILiABniLTY

by

S. Blumenthal and J. Denton

I. Introduction.

The problem to be discussed is a specialization of a problem men-

i V tioned by Deemer and Mayberry [19613. Their problem concerned the allo-

cation to targets of a stockpile of missiles, the assignment being made

on the basis of the outcome of a testing program designed to estimate

missile reliability. Thus the question of how many missiles from the
stockpile should be expended in operational test firings must be studied.

J Somewhat more specifically their problem may be put into the following

form. We assume we have a stockpile of missiles and a set of targets

I• iI(TI, T2 ,..., Tt) over which we wish to allocate these missiles in an

optimal way. If a missile is completely reliable then it has a certain

probability P of destroying a target T at which it is aimed.

Since, however, missiles are not completely reliable, we assume that a

missile has reliability R and that the probability that the target

T survives a single missile is (1-PiR), while the probability that

it survives n missiles is (1-P R)n. However, the value of R must

be estimated frpm the operational testing. It is desirable that each

target upon which missiles are expended should have enough missiles

allocated to it so that its survival probability is very small. However,

we wish to avoid assigning-more missiles than necessary to a given target.

Nevertheless, a given amount of over-assignment is to be preferred to

it the same amount of under-assignment; i.e., in terms of a non-negative

It



loss function, the loss is zero when the target does not survive and

positive otherwise.

I1. The Problem.

The specific problem to be discussed below may be formulated as

follows. We imagine a circle of fixed radius p surrounding each

target with the property that if a missile detonates within this circle -"

the target will be destroyed, but the target is undamaged by a missile

detonation, outside this circle. We associate with each missile a number

R 2/ called its reliability which we define as the probability that the

missile, when aimed at a given target, will detonate within the circle

of radius p surrounding that target. Thus the probability that a

given target survives one missile is

1 - R
and the probability that it survives n missiles is 23

(1 - R)n

so the probability of destroying the target with n missiles is

1- (1 - R)n .

Let us confine our attention to the target T. Given a number Q,

specified in advance, with 0 < Q < 1, the number of missiles nT to

be expended on the target T is then

The analysis based on R is conceptually the same asoift is replaced

by the value P developed in the Introduction.
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(1) nT T minrCh:l-(1-R) h > .

Since R is unknown, e cannot determine nT. We therefore wish

to obtain an estimate R from which nT may be estimated in the obvious

1' way:

A 1,A~h(2) = min~h:l-(l-R) > Q)

The loss function to be employed in this situation takes the value zero

if T is destroyed with probability greater than or equal to Q and

one if this probability is less than Q. This leads to the search for
A

an estimator R which underestimates R with predetermined probability.

That is, given a , 0 < a < 1, we seek an t with the property that

PA < R) > l a.
A

In classical terminology R is a lower confidence bound for the value

of R.

i We also assume that the target lies at the origin (0,0) of a

Cartesian coordinate system. If (xi,Yl,),.(3n, Yn are the points

I of impact of the n missiles, then each is thought of as a random ob-

I• servation of a bivariate normal variable with mean vector (0,0) (there

is no aiming bias) and covariance matrix • given by

S= (I 0~I1o

In words, X and Y are independently normally distributed with zero

2 2I means and unknown variances I' and, a.2 The reliability R then

has the form



R~ RR(E) -" P(A'+ Y, P')

where is a given positive constant.

We now consider several methods for obtaining confidence intervals

for R. Once these are obtained we employ their lower bounds as values

to be substituted into equation (2) to obtain the estimate n

:III. Methods of Estimation. j

Method 1 -t

On the basis of the sample (X ,Yly),..., (Xn Yn) we want a value

R such that when R is the true value of the parameter, the probability

A
that R is no greater than R should be at least (1-a):

F (4) P(•< RJR) > 1-a

IA
The experimenter is to specify p. By choosing R in this manner, we

are essentially "underestimating" R which leads to a conservative j
assignment of missiles.

We can always satisfy (4) by setting 0=, but this leads to

assigning all missiles to one target. Thus we should like to employ an

estimator R which satisfies (4) while maximizing the number of targets -

attacked. In classical terminology, this means that we are looking for

a shortest upper confidence interval for R.

Let us now confine our attention to the case where a1 = 2 = a.

In this case we have
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I x+ 2t2

21Ta f2 f2 2x +y <P

It is clear that R is a monotone decreasing function of a, so that

A
it suffices to find an upper confidence bound a for a , i.e., the

desired bound R is

(6) E=1-e-P2{.

¶ Consider the following hypothesis testing problem:

Given plI = 92 Q , to test

2 2Ho: a••

vs. H 1 a < 170 .

It is well known that (c.f. Lehmann, 1959) the test which accepts

H when n 2 > C is a uniformly most powerful unbiased test
0 -2 1

of H0 vs. H1 with size a, where C1 is the upper 100(1-a)% point

of the chi-squared distribution with 2n degrees of freedom. From this,

we see that a "uniformly most accurate" upper confidence bound a2, for

2 is given by

(7) (X2 +Y2 )

Note that the bound given by (7) and (6) has the following property.

Among all bounds H satisfying (4), this bound minimizes EL(RA)
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where L(R,P) is any measure of the loss resulting from overestimating

R, and where L(R,R) is non-negative for ý > ,R, -and is non-decreasing

SA A
in R (see [ehmann [19591, p. 78). nT is then obtained from (2).

2 2

Now let us turn our attention to the case where a2 = Kal , where

K is a known positive constant. In this case,

2 2

"2 2

(8)i e 1 2 dx dy

X +y <Q

2

1 jl O(l+(K)sine)de it 0
Again, it can be seen that R is a monotone decreasing function of 2

and again an upper confidence bound .i2 for yields the lower

confidence bound •, where
2

AJ~/ 2 2<
(A) 2 ic=1 c J e 1 +(K-l)sin e)(= R e dO

f-I.

This last integral may have to be evaluated by numerical methods.

Proceeding exactly as in the case a1 = a2 a a, we find the
A2 2

following most accurate upper confidence bound CI for

i-- 91

A2 1. 2 i2
(10) 1 0X )

where CI is the upper (1-a)% point of the chi-square distribution

with 2n degrees of freedom.
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SThe R obtained here has all of the desirable characteristics which

were enjoyed by the estimator in the previous case. However, it remains

to assign; value to .K. This might be done on the basis of previous ex-

perience, or by performing preliminary experiments to test an hypothesis

of the form H: K = K0 where K0 is chosen arbitrarily (Ko= 1, say) or

on the basis of how large a deviation from unity is significant.

Extension of this method to the case where K is-unknown" and no

assumptions are made concerning it does not appear to be feasible since

2 2
we may then formulate no hypothesis corresponding to H: a > a for

which a UMP unbiased test exists. A similar difficulty intrudes in the

case of non-zero covariances.

Method 2

For a sequence of m test firings let the random variable Xi be

one or zero according as the ith detonation is or is not inside the

circle of radius p surrounding the target (i=1,2,...,m). Following

Lehmann (1959) set

(11) Y m

where U is independent of X i=l, ... ,, and has a uniform distri-

bution on (0,I). (The use of the statistic Y is equivalent to randomi-

zation.) Then Y has probability density

(12) Ms) R [Y (l-R) m- [Y] ,<y < m+l,-[y]-

where [y] denotes the greatest integer less than or equal to y. The

conditions of Lehmann's Corollary 3 (Chapter 8 55) are then satisfied

A
and R is then the solution ofV7



(13) Pr[Y > y] = a

where y is the observed value of Y. A solution exists for a < y < m+a. V
For m + a < y we take 1, and for y < a we take R= O. This

bound is then uniformly most accurate in the sense of Lehmann and has

the further desirable property of minimizing ERL(RR) subject to the i
requirement i

(14) PrR[T < R] > 1-a for all R.

For large samples the usual normal approximation with continuity correc-

tion utilizing the statistic
m

(15) Y1 X m
i~l

A
may be employed. Then R is the value of p satisfying

(16) -I p) > a /mp(l-p)] = 1-a

where 0 is the cdf of the standard normal distribution and O(a) = a.

Method 3

Since it is not possible to find an exact test of the hypothesis: -1

H: R = R vs. HI: R < R (whose acceptance region provides a lower

bound on R); and since it is very difficult to find an approximate

test of this hypothesis (at least using the method to be described) we

shall describe a large sample test of HO: R- R vs. HI: R O. From

the acceptance region, we get upper and lower confidence bounds (%,u>
A

on R and we can then take R as a lower confidence bound. If a is
L

the significance level of the 2-sided test, and it is symmetric then
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11-1 should be the confidence level of the interval (k,l). Since the

test we use is not UMP, the bound obtained will not be sharp. How this

h'obnd compares with those obtained by the other methods investigated is

not known, nor is the actual confidence level for a small sample, since

asymptotic distribution results are used in deriving the test. Now if

01 and 02 represent upper confidence limits of coefficient

(1_-(1-a)1/2), then R(C,' 2 ) is an a-level bound on R. This is the

crudest and simplest, and it is not clear that the bound RL, described
I~ A^

below, will be larger than R(lI

The missile landing coordinates X and Y are independent N(O, 2l)

N(O, 2) respectively. We want a bound for

n i2 anle 2 .22 e Th

LeU= x, V 1 ,x',.

"i=l

Max Likelihood Estimates of eI and ,,92 are Unand Vn respectively,
1 ~2 n n

where u and v are sufficient statistics for e , e2 and have the

distribution p(u,v,e 1 ,e2 ) [Cn(uv)n/2l(e1,e 2 )n/2eI/2(•I +_
1 2

Let and e be the maximum likelihood estimates of el,e2 under

the restriction R = RO. Then we know (see Lehmann (1959), pp. 310 - 311)

that under H (i.e., when R = R0 ) that (-2 log An) (where An is the

"likelihood ratio")

9



n n
An = (uv) 2n-n en(,.o ," 12 0 exp +(- )

(uvst)btin.If P[ I = i•1 2e 1  e62

has for large n approximately a 1i .C

then we would accept H0 if (-2 log An) < Ca*

Note that and e0 are the solutions of

(i) de--(• uv el'e 2) + "i.(ele2)) = 0o71

(ii) To- (p(uvele 2 ) + 4R(ele 2 )) = o

and R(e 1,e 2) = RO. 00

Looking only at (i) and (ii), we see that el,e2  can be found as func-

tions of p, so (-2 log An) is a function of p, say h(A). We can I
show that h(O) 0 and h(-o) = h(+w) = e. Thus, if h(p) is decreasing 1
for g < 0 and increasing for .> O, there will be exactly two values

of ýL so that h(1±) = C , i.e. h(gl) = h(p 2 ) = C (I.l <

and h(p) < Ca for Pi <' < P2" Therefore, we would accept H for

any g in this range. Since e1 ,e 2, the solutions of (i) and (ii) are
A% A

functions of 4, R(8 1 ,8 2 ) is a function R(g) of ýi. If R is a_

monotone (increasing) function of .L, then # < L 2  corresponds

to R(.I) < R(4) < R( , and H would be accepted for R(gl) <

R(eVI^ 2) < R(p2 ) where el, e2  are the solutions of (i) and (ii) under

the restriction R(Sl,e2 ) = Ro. For large n, this test has size a.

It follows that a confidence interval of coefficient (i-ýa) is given by

(H(1.' ", HR(L2 )), and a lower confidence bound by R(IL).
92_ _
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The, above reasoning is based on the assumption that R(P) is mono-

tone increasing and that h(g) has the properties described. Since

d- h(g = c 4 L R(•), it follows that h(g) behaves properly if and

only if R(•) is monotone increasing. Thus it only remains to show

this last monotonicity. It appears to be but this has not yet been

demonstrated.

j One obvious difficulty about comparing this bound R(LI) with

other possible bounds is that it is not possible to solve explicitly

Sfor it, and a numerical solution of the equations (i), (ii) and

h(p) = Ca is necessary-

Method 4

For another large sample procedure for obtaining a lower confidence

I ~bound on R when the X and Y aiming errors are uncorrelated and both

means are zero, we may adopt the following approach. Let

2 2
+ x.

o 2na2
cy "E2+

R° R 27al f2 2 e dx dy

x
2 1 n 2n 2

E1 x.n- s i=l

+ L
A 1 2

R f2e dxdy

x +y <P

H'
1 11
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R e dx dy

= II

S°aJ+2

v

%-22- dx dy.

Employing the constant function 1 as the dominating function, a straight-

forward application of Lebesgue's dominated convergence theorem shows that

2 2 6A 6 2R is continuous in s 1 and s2. The continuity of 2l ,

and follows similarly. (The justification for differ-
(as2) (s2

entiating under the integral sign is found in a theorem on page 67 of

Math. Meth. of Stat. by H. Cramer). Thus P is asymptotically normal Ii
since the conditions of the following theorem of Cram4r are satisfied:

Theorem (Cramer p. 366, with suitable notation changes). If in

some neighborhood of the point s2 = el2 , s2 A o2 the function R is U

continuous and has continuous derivatives of the first and second order

2 2 A
with respect to-the arguments sI and s the random variable R is

asymptotically normal, the mean and variance of the limiting distribu-
2 2tion being given by Rand 2(c 2`)2 2 + 2(C 2 YR2 vrepcily

2(a) 2I + 2(2 2-v respectively.
tion~~~~ biggvnb adH 1  2(o 2E

Thus r [ ] has a limiting N(O,1) distribution. Now set

2 aA 2 6RA
A 2 2v - 2(s1) a-s + 2(s2) 2-

1 Ts2

12
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We know that and are continuous irn sI and s2 and that
1 26s- 1 6s

2 2 2 2
s 1 -+a, and s - a 2  in probability. Therefore - Rl and R

1 2

in probability. So by a theorem of Slutsky (p. 255, Cramer) v -* v in

probability. We now have recourse to one more pertinent theorem:

STheorem (Cramer §20.6, j. 254). Let ti 1 2')"'" be a sequence

of random variables, with the d°f.s. F1 , F2 ,... . Suppose that (F (x))

tends to a d.f. F(x) as n -* .

Let ii,,2l,.'. be another sequence of random variables, and

suppose that (1n ) converges in probability to a constant c. Put

nn1)X +r ,j Y TI ,Z
n n n n n n n rItn

Then the d.f. of X tends to F(x-c). Further, if c > 0, the d.f. of!n

Y tends to F(x), while the d.f. of Z tends to F(cx).
n c n

Now
A A

R-R R R
7 = -ý - -A

v V v

R RBy Slutsky's theorem A _-in probability as n -, . By Cramer'sS~~A V A,

v V A

§20.6 theorem the d.f. of tends to the d.f. of so, by a
A v ,y

B-R
second application of this theorem the d.f. of A-- tends to the

A A V

distribution of i.e. n (R-1) has a limiting N(0,1) dis-
v

tribution. Therefore we may proceed to construct a large-sample lower

a-confidence bound as follows

FR_
Pr [ / , ) b] =, (b)

V

KrA Vb < r] = (b)

L 13



I¸I
where 0 is the standard normal c.d.f. and b is chosen so that -

O(b) 1 -a.

We remark that though the derivation might be long and tedious,

the extension of this method to the case of non-zero covariance appears

to require nothing new in principle.

IV,. Discussion.

2 2 2 A
When a = a = a and the covariances are equal then if RI is

the estimator of R given by Ml (method 1) and the estimator
A2

of R given by M2, we have, since R2  is uniformly most accurate

R' < R => P(R < R, _< Pr( 1 <•'•)

A

We note that R2 enjoys its pleasant properties independent of

the form of the distribution function for the points of missile impact

(i.e. whether or not we assume the coordinates of the points of impact

follow a bivariate normal distribution). In particular this is true in

the case a2  a2 when a bivariate normal distribution is assumed. 41 A 2
Also, for large samples the estimator based on Y' appears to involve

less computational labor than those introduced in M3 and M4.

At present, because of the approximations involved in the estima--

tors, it seems that the only direct way of comparing M3 and M4' with

each other as well as with Ml and M2 appears to be by use of a Monte ii
Carlo method.

With respect to the formulation of the problem employed it may be

remarked that the form of the loss function requires assigning enough

missiles on each target attacked to insure its destruction before 71
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including additional targets among those to be attacked. If some targets

i ¶ require more missiles than others, then with a limited missile stockpile

those requiring fewest missiles should receive first assignment and so

on until all of the missiles in the stockpile are aksigned. If all tar-

gets require the same number of missiles but are not equally important,

this may be reflected by assigning higher priority targets a loss greater

than 1, if sufficient missiles are not assigned to insure destruction

with probability greater than or equal to Q.

I ~ It might be noted that the model set fouth in Section II may be

modified in several ways without materially changing the estimation

ii problem involved. As an example we suggest a cumulative damage model

in which the target is surrounded by a circle CT of fixed radius p.

Each missile causes total destruction inside a circle CM or radius

r about its point of impact. The target is considered to the totally

destroyed when all of the area inside the circle CT is destroyed by

mis~sile blasts, i.e. when all of the area of CT can be covered by

the area of circles of radius r drawn about the points of impact of

missiles which have been fired at the target. If, once again, we assume

that the coordinates of the points of impact are independently distri-

buted and have a bivariate normal distribution about the point of aim

i with 02 = 02 a , then questions about the number of missiles to be

expended to obtain a given percent damage with a certain level of confi-

2
dence may be answered by obtaining an estimate for a . We might al-

ternatively wish to fire enough missiles so that the expected coverage

of the circle C was greater than some specified amount (see
T

Morganthaler [1961]). In this situation it might also be well to

15



consider whether the point of aim should coincide with the target for

every missile in order to obtain maximum coverage from the missiles

expended.

71B•
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